當前位置:山東博斯達環保科技有限公司>>計生服務中心污水處理設備>>污水處理設備>> BSD廈門社區服務站廢水處理裝置-廈門儀表網
產地 | 國產 | 加工定制 | 是 |
---|
廈門社區服務站廢水處理裝置-廈門儀表網
高濃度廢水指經汽提、脫酚裝置處理后的出水,主要包括煤液化、加氫精制、加氫裂化及硫磺回收等裝置排出的含酚、含硫廢水。脫酚后廢水自脫酚裝置經管架壓力送至廢水處理場,在廢水處理場流程中稱為高濃度廢水,處理流程為渦凹氣浮+勻質罐+3T-AF1生化池+3T-AF2生化池+3T-BAF生化池+粉末活性炭吸附+混凝沉淀+過濾工藝。由于石油類物質大部分在汽提裝置中去除,進入廢水處理場的高濃度廢水中含油量不大于100mg/L,因此采用渦凹氣浮處理后可以將含油量降到10mg/L以下,同時可以去除部分SS、揮發酚及部分CODcr。其出水含油量要求小于10mg/L,CODcr的總去除率在60%左右。
高濃度廢水壓力進入渦凹氣浮,在進水端投加聚合鋁(PAC)及聚丙烯酰胺(PAM),在混合反應設備內與進水充分反應后,進入氣浮分離段。微氣泡吸附油珠,將油珠托起,達到油水分離的目的。氣浮池中設有鏈條式刮沫機,刮除表面浮渣,出水中含油量控制小于10mg/L。
氣浮出水自流進入高濃度廢水生化吸水池,用泵提升進入5000m3勻質罐,停留時間約20h,以保證后續生物處理水量、水質的穩定,防止產生大的沖擊。高濃度廢水勻質罐出口增加調節閥,以保證生化系統進水的穩定。勻質罐出水自流進入高濃度廢水生化處理系統。生化處理系統設置為厭氧(AF1)、兼氧(AF2)和好氧(BAF)三段,生化池總有效容積為14700m3,水力停留時間為98小時。進水考慮消能設施,每組生化池進水管兩側增加兩道寬頂溢流堰。3T-AF1厭氧生物濾池的主要作用是通過厭氧處理,對廢水中的難降解有機物進行酸化水解和甲烷化,提高可生化性,降低廢水處理的運行成本。共分八組五級并聯運行,水力停留時間為33.33小時。每級采用下進水上出水逐級溢流方式布水,池內安裝載體支架3層,裝填高效懸浮載體2層,載體裝填量為2400m3,投加高效兼氧微生物1920kg,載體有效接觸時間為21.33小時。底部設置曝氣管供開工期間使用,在正常運行時,甲烷氣體產生量為172m3/h。池頂設置密閉混凝土蓋,將甲烷氣體收集之后進行焚燒處理。因為甲烷與空氣混合后會形成爆炸性氣體,所以操作時禁止曝氣。
為防止厭氧池的低部污泥沉積,厭氧池出水經回流泵回流,回流比按2:1設計,表面水力負荷為10.8m3/m2•d。3T-AF2作為兼氧生物濾池,是厭氧和好氧的過渡段,在運行過程中,可以根據實際情況,調節兼氧池每級的曝氣量,以適應不同水質變化的要求,保證系統的處理效果,降低廢水處理的成本。共分八組五級并聯運行,每級采用下進水上出水的逐級溢流方式布置。池內安裝載體支架3層,高效懸浮載體2層,載體裝填量為2480m3,投加高效兼氧微生物1984kg,載體有效接觸時間為20.67小時。底部設置曝氣管用于攪拌和反沖洗,平時運行氣水比為20:1,底部設置排泥管。3T-BAF的出水流到3T-AF2,利用進水中的碳源進行反硝化,同時為后段氨氮的硝化提供堿度,減少了加堿量,降低成本,又可以防止產生硫化氫氣體。池內設4組溶解氧在線儀表,控制DO<1mg/L,以保證處理效果。3T-AF2池出水進入到3T-BAF池,通過好氧處理降解廢水中的有機物。在進水端需要投加硝化液,投加量按3-5L/m3水設計。池內安裝載體支架3層,載體2層,載體裝填量為2550m3,投加高效好氧微生物2040kg,載體有效接觸時間為20.0h。底部安裝3T-ADS曝氣系統用于曝氣,氣水比為40:1。3T-BAF出水在回流到3T-AF2之前,作為進水水質較高時的稀釋水源,回流比例1:1。池內設4組溶解氧在線儀表,控制DO在2-4mg/L,以保證好氧生物處理的效果。經過生物處理后的出水,經泵打入到粉末活性炭吸附池。
粉末活性炭先配成懸浮液,再打入混合池與生物處理后出水充分混合,然后進入吸附池。在吸附池中粉末活性炭與廢水充分接觸,廢水中的CODcr及其他污染物被活性炭吸附。粉末活性炭吸附池出水進入混凝反應池,在混凝反應池中投加聚合鋁(PAC)及陽離子聚丙烯酰胺(PAM)充分混合、反應,出水進入混凝沉淀池,進行泥水分離,去除大部分懸浮物及少量生物處理沒有去除的CODcr,從而提高出水效果。混凝沉淀池出水進入到高濃度廢水過濾吸水池,由提升泵加壓進入多介質過濾器+生物活性炭設備。通過設定時間周期或進出口壓差可以實現自動反沖洗。將二氧化氯投加到經過濾器處理后的出水,消毒滅菌之后,作為循環水場的補充水。用在線檢測儀表檢測出水水質,發現超標水質時會自動進入不合格放水池,用泵提升送至渣場進行蒸發處理。
廈門社區服務站廢水處理裝置-廈門儀表網
3.2.2膜生物反應器在醫院污水處理應用的效果
膜生物反應器的利用對水中氨氮去除可達90%以上,而且在抗沖擊負荷能力方面有很大的優勢。通常運行條件較為復雜時,相比活性污泥法,MBR去除有機物表現出很強的能力,出水水質較為良好且穩定,使污泥齡與水力停留時間實現*分離。另外,污泥混合液進行過濾過程中,因生物相沉積層在膜面作用下形成導致膜孔徑縮小,采用MBR工藝可對病原微生物進行有效地截留,所以在去除病毒方面更具穩定性,這也就彌補了傳統加氯消毒工藝的不足之處。在后續消毒方面,相比活性污泥法處理工藝,MBR工藝也能使消毒劑得到很大的節約,在接觸的短時間內便可實現微生物滅活的目標,所以對減少投資與接觸設備的占地面積以及降低消毒工藝產生的相關費用具有很重要的意義。在減少消毒副產品危害性方面,MBR能夠保證鹵代烴的生產量減少,若水中余氯消耗殆盡,鹵代烴含量將不再發生變化。而且總鹵代烴、一溴二氯甲烷、等濃度都會降低,使其對環境及人體健康的持久、潛在危害得以減少。因此,MBR工藝的利用既可保證消毒劑用量的降低,也使消毒副產品對人體健康及生態環境帶來的影響zui大程度的減少,在醫院污水處理中可充分利用。
廈門社區服務站廢水處理裝置-廈門儀表網
近年來,我國水體富營養化問題日漸加劇,嚴重阻礙了經濟社會的可持續發展.而磷是引起水體富營養化的關鍵營養物質,減少城市污水中磷的排放對控制富營養化具有非常重要的意義.
城市生活污水處理通常采用生物法,該法對氨氮和COD的去除效果好,但除磷效果差.與生物法相比,化學混凝法除磷具有處理效果好、穩定性強等優點,但在工程應用中存在藥劑投加量大、成本高、產泥量大等缺點,因此研制低成本高效率的除磷混凝劑具有很高的應用價值.
目前水處理混凝劑主要為鋁鹽(或鐵鹽)混凝劑,如廣泛應用的聚合氯化鋁(PAC),其一般采用鋁屑、*、氯化鋁、鋁土礦等作為原料進行制備,成本較高.而一些工業廢渣中含有大量可回收利用的鋁鐵元素,原料易得且價格低廉,近年來,利用工業廢渣作為原材料制備混凝劑的研究得到了足夠的重視.
粉煤灰是燃煤電廠排出的固體廢渣,其氧化鋁含量通常為20%~35%,zui高可達50%,可代替鋁土礦成為一種很好的氧化鋁資源.如果利用粉煤灰為原料來生產鋁鹽混凝劑既可降低生產成本,又能使廢物循環利用,避免對環境的“二次污染”.國內外一些學者對于將粉煤灰作為混凝劑處理污水方面開展了研究工作.例如針對預處理后的造紙廠廢水,采用粉煤灰作為吸附劑進行深度處理,COD和色度的去除率分別達到65%和80%.研究發現,粉煤灰可以作為重金屬離子的吸附劑,當重金屬離子濃度低于100 mg·L-1時,去除率分別為:鋅86%~98%、鉛96%~99%、鎘51%~95%、銅60%~99%,且去除率隨pH值的增大而提高. ArvindK等(2014)研究了蔗渣粉煤灰對丙烯腈的去除能力,發現投加量為4 g·L-1、反應時間為5 h時對丙烯腈(AN)的去除效果為78%,此時去除效果.劉等研究了粉煤灰對城市景觀水體中磷的吸附性能,發現吸附反應符合Langmuir方程,粉煤灰吸附容量為23.15 mg·g-1,對水體中溶解態磷(DP)的去除效果為88.30%.
但是粉煤灰處理污水過程中存在一些問題,首先,粉煤灰在形成過程中,部分氣體逸出形成開放性孔穴,表面呈蜂窩狀,具有吸附性能,而部分未溢出的氣體被裹在顆粒內形成封閉性孔穴(Jin et al.,2012),降低了粉煤灰的比表面積,限制了其吸附容量,致使應用過程中投加量大,產泥量增加.其次,粉煤灰質量輕、密度小(表觀密度為0.55~0.80 g·cm-3),其處理后的廢水存在泥水分離困難的問題.此外,我國粉煤灰中鋁元素含量高而鐵元素含量低(一般為4%~10%),其制備的混凝劑屬于鋁鹽混凝劑,具有絮體松散易碎、沉降速度慢的缺點.
針對粉煤灰吸附容量小、投灰量大、泥水分離困難的問題,國內外研究者嘗試采用物理或化學的方法對粉煤灰進行改性,打開其顆粒內的封閉性孔穴,提高孔隙率及比表面積,從而改善其吸附效能.劉等采用3種方法對粉煤灰改性,并用于處理印染廢水,結果表明鈣改性粉煤灰的色度和COD去除效果,絮體沉降速度zui快.采用PDMDAAC對粉煤灰進行改性,結果表明,改性粉煤灰對有機分子的吸附能力和離子交換能力都得到了增強,對染料分子的去除能力比改性前提高了12.5%.分析了粉煤灰合成的沸石對廢水中氮和磷的去除性能,發現改性后其陽離子交換容量(206.3 cmol·kg-1)遠高于原粉煤灰(2.2 cmol·kg-1),磷和氨氮的去除率分別可達到60%~92%和40%~60%.基于此,本研究擬采用鹽酸對粉煤灰進行改性,不但能打開封閉性孔穴,還能通過酸的作用使顆粒表面生成大量新的微細小孔,增加比表面積和孔隙率.
針對粉煤灰處理污水時絮體松散易碎、沉降速度慢的問題,本研究向粉煤灰中添加富含鋁鐵元素且價格低廉的鋁土礦以補充鐵元素,使得所制備的混凝劑能結合鐵鹽混凝劑的絮體密實、沉降速度快的優勢,彌補鋁鹽混凝劑的缺點.同時根據協同增效原理,兩種或兩種以上的組分相加或調配在一起,所產生的作用大于各種組分單獨應用時作用的總和.因此,所制備的鋁鐵復合混凝劑能充分發揮兩種混凝劑各自的優勢,提高混凝效果.
混凝是一個動態變化的過程,在混凝過程中的主導作用機理可能會發生演替.目前國內外針對混凝機理的研究方法一般有X-射線衍射分析、紅外光譜分析、Zeta電位測定等,大都是針對某一方面的混凝機理進行分析,單一的研究方法不能全面地闡述混凝的動態變化過程.因此,采用不同方法對混凝劑在不同混凝過程中的作用機理進行系統闡述是十分必要的.
基于此,本研究以廉價易得的粉煤灰和鋁土礦為主要原料,采用鹽酸改性的方法制備出一種新型的無機鋁鐵復合混凝劑.重點研究了所制備的混凝劑對生活污水的除磷效能,并從形態學、分形維數特征、電荷特性等方面對其混凝機理進行了系統分析.本研究可為礦渣基水處理混凝劑的開發、生產及應用提供理論基礎與技術參考.
請輸入賬號
請輸入密碼
請輸驗證碼
以上信息由企業自行提供,信息內容的真實性、準確性和合法性由相關企業負責,儀表網對此不承擔任何保證責任。
溫馨提示:為規避購買風險,建議您在購買產品前務必確認供應商資質及產品質量。