當前位置:山東博斯達環保科技有限公司>>計生服務中心污水處理設備>> BSD黑河社區衛生廢水綜合處理設備-黑河儀表網-水處理
產地 | 國產 | 加工定制 | 是 |
---|
黑河社區衛生廢水綜合處理設備-黑河儀表網
一、概況
隨著我國市場經濟的深入發展,特別是產品化趨勢日益明顯,產品包裝行業得到*發展,市場對包裝制品需求不斷增大。包裝紙板生產在世界各國國民經濟中占有重要的地位,紙板產品成為包裝工業的主要原材料。我國“十五”規劃中明確表明,我國造紙產量與需求量平均都能保持5%左右的增長,發展方向主要集中在高檔紙品上。可見,目前市場前景廣闊,產品發展余地大,銷售市場有保障。
紙業有限責任公司根據目前市場情況,經過長時間的市場調查了解和前期準備工作,引進全自動熱力噴放制漿(爆破制漿)(權號:ZL02246643.6)技術,計劃投資6000萬元人民幣,以竹子為主要原料生產竹漿,新上年生產能力6.0萬噸造紙生產線,生產紙漿板、生活用紙和包裝用紙。工程分兩期建設,一期年生產能力3.6萬噸,二期年生產能力2.4萬噸,整個項目由制漿車間、造紙車間、輔助設施、公用工程、環保工程、生活設施和儲運工程等部分組成。
爆破制漿過程中不產生蒸煮廢液即傳統造紙制漿黑液,主要為打漿時產生的洗液,其污染組成為:BOD5:主要來自制漿中分解的有機物,即糖類、醇類、有機酸、木質素等;CODcr:主要來自木質素及其衍生物;SS:主要來自流失的細小纖維。
根據《紙業有限責任公司60kt/a爆破制漿造紙工程環境影響報告書》中提供的數據,外排廢水主要是生產中的打漿廢水,一期廢水量約為9410m3/d,二期廢水量約為6273 m3/d,二期工程建成后外排廢水量共計約15683m3/d。
根據《建設項目管理條例》和《環境保護法》之規定,環保設施的建設應與主體工程“三同時”。受紙業有限責任公司委托,我公司提出了該項目的廢水處理方案,按本方案進行建設后,可確保廢水的達標排放,同時將大部分廢水經預處理后回用于生產過程,減少污染物的排放,能*地減輕該項目外排廢水對沙溪的不利影響。
二、水質水量和排放標準
(一)水量
日排放水量:一期9410m3/d,二期6273 m3/d,二期合計15683m3/d
設計規模:一期9410m3/d,其中預處理能力為9410m3/d,生化處理能力為2900m3/d。
二期新增6273 m3/d,其中預處理能力為6273m3/d,生化處理能力為2000m3/d。
二期合計15683m3/d,其中預處理能力為15683m3/d,生化處理能力為4900m3/d。
本次方案設計對一期水量進行設計。
黑河社區衛生廢水綜合處理設備-黑河儀表網
連續運行階段反應器氨氮, 亞硝氮和硝氮變化如圖 2所示, 進水溫度及總氮去除率如圖 3所示.為了研究脫氮途徑, 引入厭氧氨氧化反應方程式, 如式(1)所示.厭氧氨氧化菌按1 :1.32的比例消耗氨氮和亞硝氮.厭氧氨氧化工藝生成的氮氣量與硝氮量之比為8, 該值稱為特征比.
反應器改為連續進水出水的第1 d, 總氮去除率為13.8%.但亞硝氮氨氮消耗比為1.41, 特征比為28.17, 不滿足厭氧氨氧化方程式.分析其原因, 可能是由于火山巖填料對基質的吸附作用.隨著吸附達到飽和, 總氮去除率明顯降低, 第4 d時, 總氮去除率由13.8%降低到5.2%.反應器繼續運行, 氨氮和亞硝氮去除效果逐漸提高, 出水硝氮濃度逐步增加.第109 d時, 連續15 d氨氮和亞硝氮去除率大于90%, 總氮去除率大于70%, 亞硝氮氨氮消耗比穩定在1.17~1.26, 特征比穩定在8.76~10.21, 符合厭氧氨氧化反應方程式, 表明上向流厭氧氨氧化生物濾柱啟動成功.
Zekker等在20℃條件下以發酵廠高氨氮污水為基質, 歷時186 d成功啟動厭氧氨氧化工藝.進水溫度20~25℃, 氨氮和亞硝氮基質濃度為30~50 mg ·L-1, Bao等在224 d啟動厭氧氨氧化生物濾柱. Zhang等以含25~35 mg ·L-1氨氮和亞硝氮的配水為基質, 23℃條件下90 d成功啟動厭氧氨氧化SBR反應器.與前人研究成果相比, 本試驗以更低濃度的實際生活污水為基質, 在15.1~21.9℃的條件下, 成功啟動厭氧氨氧化反應器, 較前人的研究成果有所進步.
2.2 厭氧氨氧化濾柱的低溫運行
第153~244 d時, 反應器在秋季運行, 進水溫度為12.6~18.9℃.溫度在14℃以上時, 反應器氨氮、亞硝氮去除率大于95%, 溫度小于14℃時, 氨氮和亞氮去除率明顯降低.第245 d, 反應器運行進入冬季, 進水溫度為10.2~14.3℃.由圖 3可知, 反應器總氮去除率與進水溫度密切相關.進水溫度在10~12℃時, 總氮去除率為25%~60%.進水溫度為12~14℃時, 總氮去除率為55%~75%.第245~334 d, 反應器zui大出水總氮濃度為30.1 mg ·L-1, 平均總氮去除率為54.3%.
為了避免生物膜過度增殖導致濾柱堵塞, 第461 d對濾柱進行反沖洗.反沖洗時, 采用較大的水力負荷以達到削減生物膜厚度的目的.以氣水聯合的方式進行反沖洗, 氣水比為3, 水沖強度為2.0 L ·(s ·m2)-1, 反沖洗時間為3 min.反沖洗后, 氨氮去除率從98.6%降低到59.7%, 亞硝氮去除率從97.3%降低為57.2%, 總氮去除率由78.4%降為48.1%.運行8 d后, 氨氮去除率恢復至90%以上, 總氮去除率提高到71%.相比于其他生物膜, 本試驗厭氧氨氧化生物膜反沖洗后恢復速度較快.有研究表明, 成熟的厭氧氨氧化菌生物膜結構緊湊, 分泌較多的胞外多聚物, 對水力負荷沖擊的抵抗能力強, 因此成熟厭氧氨氧化生物膜受反沖洗影響較小.
第510~604 d, 運行季節為秋季, 進水溫度為13.2~19.6℃, 反應器氨氮和亞硝氮去除率大于90%, 總氮去除率大于75%.相比于去年同期水平, 進水溫度在14℃以下時, 依然有著良好的處理效果.第605 d, 運行再次進入冬季, 進水溫度為10.1~14.7℃.進水溫度在10~12℃時, 總氮去除率為50%~65%.進水溫度為12~14℃時, 總氮去除率為70~80%.第605~695 d, 反應器zui大出水總氮濃度為19.7 mg ·L-1, 平均總氮去除率為69.7%.總氮去除率比去年同期相比增長了29%, 總氮去除負荷增長率為23%.
Guillén等通過1 048 d的低溫馴化, 提高了低溫厭氧氨氧化工藝的處理效果. Trojanowicz等從低溫馴化3 a的厭氧氨氧化反應器中取泥, 在低溫時成功啟動反應器并取得了良好的處理效果.前人的研究主要表明, *的低溫馴化可以提高低溫厭氧氨氧化菌活性, 但對于*馴化對厭氧氨氧化活性提高并未定量化.在本試驗中, 從第245~334 d到第605~695 d, 歷時1 a, 總氮去除負荷增長率為23%, *低溫馴化明顯地提高了反應器低溫處理效果.
2.3 生物學特性研究
每個季節從反應器中取出濾料, 測定濾料生物量及反應速率, 結果如圖 5所示.生物量單位以VSS/濾料計, 為mg ·g-1.
第55~148 d, 進水溫度為16.5~21.9℃, 反應器生物量從5.08 mg ·g-1增長到9.61 mg ·g-1, 增長幅度較大.第230~298 d, 進水溫度為10.2~13.8℃, 生物量由10.20 mg ·g-1提高為11.38 mg ·g-1, 低溫環境中生物量增長速度較慢, 表明溫度對厭氧氨氧化菌生物膜的增長有較大影響.第461 d濾柱進行反沖洗, 生物量從14.96 mg ·g-1降低至8.01 mg ·g-1, 反沖洗可以有效地剪切生物膜,
黑河社區衛生廢水綜合處理設備-黑河儀表網
(1)吸附法此處的吸附法與上述的廢水處理物理吸附法基本相近,吸附劑會吸附有色污染物之后沉降,常用的吸附劑有活性炭、粉煤灰,竹炭等。陳鎮等為了使得竹炭的效果有所提高使用了CaCl2化學浸漬法改變了竹炭的結構特性以及表面化學性質,大大的提高竹炭的脫色率。實驗證明在pH=5、反應時間按接近12h時其脫色率達90%,由此可見改良后竹炭的脫色率相對于未改良的竹炭提高了很多。
(2)混凝法混凝法與吸附法相似,不同點在于其清除的污染物一般是膠體或懸浮小顆粒,這些物質吸附在混凝劑上沉降,但是此法主要是降低廢水色度,而并不是清除有色物質。混凝劑又可分為無機混凝劑、有機混凝劑、微生物混凝劑,常用的混凝劑主要有鋁鹽、鐵鹽、聚丙烯酰胺、納米纖維等,微生物混凝劑目前來說還不算成熟所以應用較少.
化學脫色法(1)氧化法氧化法又可分為臭氧氧化法、濕式氧化法、電化學氧化法、Fenton法。臭氧氧化法是指臭氧分解后,利用其強氧化性使其與具發色官能團的污染物反應將大分子物質降解成小分子物質,使其脫色。濕式催化氧化法是指氧氣在高溫、高壓、催化劑的條件下作為氧化劑將污染物降解成易清除物質,降低廢水的色度。此法一般在造紙、印染中常見。電化學氧化法是指在具外加電場的前提下,污染物質發生氧化反應之后降解成小分子物質從而達到清除有色物質。
Fenton法目前在廢水處理領域中是一種*且值得深入研究的方法,研究表明,此法對于有色物質的清除效果較好,且潛力巨大,值得推廣。
宋亞麗采用超聲Fenton法對偶氮染料廢水進行處理,超聲Fenton法使用的試劑可以與酸性染料產生協同作用使其降解,,研究結果表明單獨的Fenton法對酸性染料的降解率(脫色率)相對于超聲Fenton法來說較低,效果并不理想。
(2)保險粉法連二亞硫酸鈉(Na2S2O4)也稱為保險粉,主要作為漂白劑使用,其脫色原理是保險粉具較強還原性,利用其還原性破壞污染物質的發色基團從而達到脫色目的,相對于活性炭來說,保險粉的脫色效果較弱。由于保險粉是具有一定危害的物質,所以使用的時候應當小心操作。
陶大鈞等[13]人對中藥制藥廢水的處理中使用了此法,在pH=6.5,與氧氣結合時間為1h,之后加入催化劑,COD清除率可達51%。
請輸入賬號
請輸入密碼
請輸驗證碼
以上信息由企業自行提供,信息內容的真實性、準確性和合法性由相關企業負責,儀表網對此不承擔任何保證責任。
溫馨提示:為規避購買風險,建議您在購買產品前務必確認供應商資質及產品質量。