涂建國
:產品綜述
HDDW蓄電池單體活化儀是針對電池電壓為2V、6V或12V,因極板硫化結晶造成容量落后的閥控式鉛酸蓄電池(以下簡稱蓄電池)進行活化的設備。具有對蓄電池進行“活化”及“核對放電”、“自動充電”等功能。
HDDW蓄電池單體活化儀可以針對不同落后電池的實際情況進行核對放電試驗,三階段自動充電,或設置多個循環周期對電池作多次循環充放電,使電池極板失效的活性物質再次活化,提升落后電池的容量。同時配備PC機應用軟件,把采集的數據上傳至計算機,以便進行各種分析。
該儀器功率大,體積小,重量輕,上位機數據管理軟件功能齊全;友好、人性化的人機交互界面,大大減少了蓄電池日常測試維護的工作量,是蓄電池維護工作的得力助手。
請您在使用儀器前仔細閱讀本說明書,以免因使用不當,造成損失!
二:主要功能特點
l 儀器采用觸摸屏操作,直接使用觸摸筆或者手指即可操作界面。
l 存儲數據方式有內部存儲和外部SD卡存儲方式,自行選擇。
l 具有過壓、過流、過熱等保護功能。
l 活化功能:在蓄電池處于離線狀態下,可以對單節蓄電池進行活化。活化前設置好活化循環次數,單次活化充放電時間,保護電壓等參數,儀器便自動執行活化功能;并實時顯示電池電壓、充/放電電流、充入/放出容量、充/放電時間等數據;預設的活化循環執行完畢或人為終止操作均可停止活化過程。
l 放電功能:在蓄電池處于離線狀態下利用智能假負載進行恒流核對放電,設定好“放電電流”、“放電時間”、“放電容量”、“終止電壓”等參數,儀器便自動執行放電功能,并實時顯示出放電電流、電池已放容量、電池電壓、放電時間等數據;當蓄電池達到預設的終止放電條件或人為終止操作均可停止放電測試。
l 充電功能:在蓄電池處于在線浮充或離線狀態下,可對蓄電池進行自動充電,設定好“充電電流”、“充電時間”、“終止電壓”等參數,儀器便自動執行充電功能,并實時顯示出充電電流、電池已充入容量、電池電壓、充電時間等數據,當蓄電池達到預設的終止充電條件或人為終止操作均可停止充電。
l 內阻快測功能:(選配)在電池組脫離系統后放電,只需1~2分鐘便可測出電池的評估容量、內阻等;
l 高亮度彩色屏幕液晶顯示器,顯示效果清晰優美。
l 上位機數據管理軟件功能強大,界面友好,提供數據管理、打印、分析、報表統計、自動生成測試報告等功能。
三:技術指標:
單體電壓測量類型 | 2V/6V/12V |
單體電壓測量范圍 | 2V:0~3V 6V/12V:0~16V |
單體電壓分辨率 | 2V:0.001V 6V/12V:0.001V |
電壓測試精度 | 0.5% |
充放電電流工作范圍 | 2V:1A~100A 6V:1A~30A 12V:1A~30A |
充放電電流控制精度 | 0.1A |
電流測試精度 | 1% |
電池容量核對范圍 | 2V:20Ah~1000Ah 6V:20Ah~300Ah 12V:20Ah~300Ah |
工作電壓 | AC 220±15% |
冷卻方式 | 強制風冷 |
工作環境 | 溫度:0℃~40℃ 濕度:20%~80%RH |
儲藏條件 | -20℃~70℃包裝儲存 |
顯示方式 | 高亮度大屏幕LCD |
外型尺寸(寬× 高×厚) | |
重 量 | 11kg |
四:測試步驟介紹
中較為困難和關鍵的問題之一。
按照時域波形特征,外部背景噪聲主要包括周期型干擾信號、脈沖型干擾信號和白噪聲干擾信號。針對不同干擾信號的特征和性質,需采用不同的抑制措施。在已有的各種系統中,干擾信號抑制主要包括硬件和軟件兩個方面的措施。雖然硬件抑制方法有一定的效果,但是現場干擾會隨著環境、設備負載以及運行方式的改變而改變,硬件抑制方法難以達到理想的效果。
隨著數字信號處理技術的發展,高頻局部放電檢測中的干擾抑制措施主要依靠軟件實現。目前常用的數字化抗干擾方法主要有:脈沖平均法、數字濾波法、信號相關法、神經網絡法以及小波分析法。小波變換是基于非平穩信號的分析手段,在時域、頻域同時具有良好的局部化性質,非常適合于不規則、瞬變信號的處理,越來越多的用于高頻局部放電檢測的干擾抑制措施中。
對于放電信號的區分,一方面可利用前述的抗干擾技術,將外界干擾噪聲抑制到較小水平,另一方面也可通過與不同缺陷放電特征數據庫進行對比,即進行放電信號的模式識別。模式識別的主要步驟包括放電信號的測量、放電信號特征提取與分類和特征指紋庫比對三個步驟,從而判斷所測信號是否為真實的放電信號以及是何種放電。一種模式識別方法是利用相位統計譜圖的形狀特點,通過計算統計譜圖的偏斜度、陡峭度以及相互關聯因素等特征參數,從而對缺陷類型進行確認和識別。另外一種是聚類分析法,該方法主要將放電信號按其各自的等效頻率、等效時長或其它與波形相關的特征參量進行分類,形成時頻域映射譜圖。時頻譜圖的特點是多個放電源、不同放電類型的局部放電脈沖會被映射到不同聚點,這樣便于在局部放電相位譜圖上將真實放電和噪聲干擾區分開來如圖5-8所示。還有一種聚類原理是利用三相同步局部放電檢測技術,對耦合到的信號進行幅度、相位或頻率的計算,從而進行分類,如圖5-9所示。
圖5-8 局部放電時頻映射譜圖[16] 圖5-9 三相局部放電同步檢測聚類譜圖[28]
(二)放電源的定位
對于電力電纜運行情況下局部放電源的定位,較為簡單的方法是利用高頻局部放電檢測傳感器在電纜終端、各個接頭處分別進行局部放電信號的平頂山蓄電池單體活化儀選型檢測,通過對比分析不同傳感器位置放電信號的時域和頻域特征,來進行放電源的大致定位。該方法主要利用的是放電脈沖信號在電纜中傳輸衰減原理,隨著放電信號的傳播,放電信號幅值減小,上升時間下降、脈沖寬度變寬,信號高頻分量嚴重衰減等,因而可利用這些特點大致判斷出放電源的位置。但值得注意的是該方法較為粗略,精度較低,僅能大致判斷出在哪個接頭附近或哪兩接頭間存在缺陷。
另一種方法是利用分布式局部放電同步檢測技術。該方法與上述方法類似,但不同的是在連續幾個接頭處進行同步測量,根據不同測量處耦合到同一脈沖信號的幅值大小、極性以及到達時間的不同而準確定位放電源的位置。該方法已在電纜在線局部平頂山蓄電池單體活化儀選型放電監測中逐漸展開應用,如圖5-10所示。圖5-10 分